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LINEAR OPERATORS

BRANKO CURGUS

Throughout these notes, we study vector spaces over a scalar field F,
which is either R or C. The set of positive integers is denoted by N, and
its elements are i, j, k, [, m,n,p. For a nonempty finite set A, the number of
elements in A is denoted by #A4 € N, with #0 = 0.

Vector spaces and sets of vectors are denoted by capital calligraphic let-
ters, such as ¥, 2", o7, etc. Vectors in abstract vector spaces are denoted by
lowercase Latin letters, such as u, v, x,y, etc. Linear operators are denoted
by uppercase Latin letters, such as S,T, etc. Scalars are represented by
lowercase Greek letters, such as «, 3, etc.

Vectors in Euclidean spaces F" are denoted by boldface lowercase letters,
such as a, b, etc. Matrices with entries in F are denoted by uppercase Latin
letters in sans-serif font, such as A, B, M, etc. The n x n identity matrix is
denoted by |,,, while 0 represents a zero matrix whose size will be specified
in context. The transpose of a matrix M is denoted by MT.

Pay attention to exceptions to these conventions. If you notice significant
deviations, please let me know.

1. FUNCTIONS

First we review formal definitions related to functions. In this section A
and B are nonempty sets.

The formal definition of function identifies a function and its graph. A
justification for this is the fact that if you know the graph of a function, then
you know the function, and conversely, if you know a function you know its
graph. Simply stated the definition below says that a function from a set A
to a set B is a subset f of the Cartesian product A x B such that for each
x € A there exists unique y € B such that (z,y) € F.

Definition 1.1. A function from A into B is a subset f of the Cartesian
product A x B such that the following two conditions are satisfied

Ve A Jye B suchthat (z,y) € f. (Total)
Vee A Vy,zeB (z,y) e fA(z,2)ef = y== (UniVal)
%
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The condition (UniVal) in Definition 1.1 is popularly known as the ver-
tical line test. Its full form is as follows:

Vi, x9 € A

Yyi,y2 € B (x1,y1) € fA(z2,92) €E fAZ1 =22 = y1 =y2. (1.1)

The implication in (1.1) is important since its partial contrapositive is
often used in proofs. Its partial contrapositive is:

Vai, 29 € A

Yy ys € B (x1,y1) € fA(z2,92) €E fAL £ y2 = x1 #x2. (1.2)

If f is a function, the relationship (z,y) € f is commonly written as
y = f(z). The symbol f: A — B denotes a function from A to B.

The reason you might not recognize the implication in (1.2) as familiar
is that in Definition 1.1, (1.1), and (1.2), instead of the standard notation
y = f(x), we used the graph notation (z,y) € f. The implication in (1.2)
in the standard notation reads: For all x1, 22 € A the following implication
holds: f(z1) # f(z2) = @1 # @2

Definition 1.2. Let f C A x B be a function. The set A is said to be
the domain of f : A — B. The set B is said to be the codomain of
f:A— B. The set

{y € B:Jx € A such that (z,y) € f}
is called the range of f : A — B. It is denoted by ran(f). %
Definition 1.3. Let f C A x B be a function. The function f: A — B is
said to be a surjection if the following condition is satisfied
Vye B Jx € A such that (z,y) € f. (Surject)

The function f : A — B is said to be an injection if the following condition

is satisfied
Vai,20 € A .

Yyi,y2 € B (z1,51) € f A (22,2) € f Am1 # 22 = y1 # 32 (Inject)

O

Definition 1.4. Let f C A x B be a function. The function f: A — B is
said to be a bijection if it is both: a surjection and an injection. That is,
f C A x B is a bijection if it satisfies four conditions: (Total), (UniVal),
(Surject), and (Inject). O

Next we give a formal definition of a composition of two functions. How-
ever, before giving a definition we need to prove a proposition.

Proposition 1.5. Let f : A — B and g : C — D be functions. Ifran f C C,
then

{(z,2) e AxD:3y € B (z,y) € f A (y,2) € g} (1.3)
is a function from A to D.

Proof. A proof is a nice exercise. O
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The function defined by (1.3) is called the composition of functions f
and g. It is denoted by f o g.
The function

{(z,z) € AxA:z € A}

is called the identity function on A. It is denoted by id 4. In the standard
notation id 4 is the function id4 : A — A such that id4(x) = z for all z € A.

A function f : A — B is invertible if there exist functions g : B — A
and h: B — A such that fog =1idg and ho f =id4.

Theorem 1.6. Let f: A — B be a function. The following statements are
equivalent.

(a) The function f is invertible.

(b) The function f is a bijection.

(¢) There exists a unique function g : B — A such that f o g =idp and

go f=idy.
If f is invertible, then the unique g whose existence is proved in Theo-

rem 1.6 (c) is called the inverse of f; it is denoted by f~!.

Let f: A — B be a function. It is common to extend the notation f(x)
for x € A to subsets of A. For X C A we introduce the notation

fX)={yeB:3zeXy=f(x)}.

With this notation, the range of f is simply the set f(A). It is also common
to extend this notation to describe “inverse” image of a subset in B. For
Y C B we introduce the notation

i) ={zeA: fx) eV}

Notice that this notation is used for arbitrary function f. It does not imply
that f is invertible. Here f~! is just a notational device.
Below are few exercises about functions from my Math 312 notes.

Exercise 1.7. Let A, B and C be nonempty sets. Let f : A — B and
g : B — C be injections. Prove that go f : A — C is an injection. O

Exercise 1.8. Let A, B and C be nonempty sets. Let f : A — B and
g : B — C be surjections. Prove that go f : A — C is a surjection. %

Exercise 1.9. Let A, B and C be nonempty sets. Let f : A — B and
g : B — C be bijections. Prove that go f : A — C is a bijection. Prove that

(gof)t=f"log™". 0
Exercise 1.10. Let A, B and C be nonempty sets. Let f : A — B,
g: B — C. Prove that if g o f is an injection, then f is an injection. %

Exercise 1.11. Let A, B and C be nonempty sets and let f : A — B,
g: B — C. Prove that if g o f is a surjection, then g is a surjection. ¢
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Exercise 1.12. Let A, B and C be nonempty sets and let f : A — B,
g: B — Cand h: C — A be three functions. Prove that if any two of
the functions hogo f, go foh, fohog are injections and the third is a
surjection, or if any two of them are surjections and the third is an injection,
then f, g, and h are bijections. O

2. LINEAR OPERATORS

In this section %, ¥ and # are vector spaces over a scalar field F.

2.1. The definition and the vector space of all linear operators. A
function T : ¥ — # 1is said to be a linear operator if it satisfies the
following conditions:

Yue?V YoeV T(u+v) =T(u)+ f(v), (2.1)

VaeF Yve¥ T(aw) = aT(v). (2.2)

The property (2.1) is called additivity, while the property (2.2) is called
homogeneity. Together additivity and homogeneity are called linearity.
Denote by Z (¥, #') the set of all linear operators from ¥ to # . Define

the addition and scaling in Z (¥, #). For S, T € L(¥,# ) and o € F we
define

(S+T)(v)=Sw)+T(v), Vove?, (2.3)
(o) (v) = aT(v), Voe?. (2.4)

Notice that two plus signs which appear in (2.3) have different meanings.
The plus sign on the left-hand side stands for the addition of linear operators
that is just being defined, while the plus sign on the right-hand side stands
for the addition in #. Notice the analogous difference in empty spaces
between v and 7" in (2.4). Define the zero mapping in .Z (¥, #') to be

03(7/77/) (v) = Oy, Yve?.
For T € Z(V,# ') we define its opposite operator by
(=T)(v) = =T(v), Yve¥.

Proposition 2.1. The set L(¥V,#') with the operations defined in (2.3),
and (2.4) is a vector space over F.

ForT € Z(¥,#)and v € ¥ it is customary to write T'v instead of T'(v).

Example 2.2. Assume that a vector space 7 is a direct sum of its subspaces
% and ¥, that is ¥ = % ® # . Define the function P : ¥ — ¥ by

Pv=w & v=utw, ueEU, weW.

Then P is a linear operator. It is called the projection of ¥ onto #  parallel
to % ; it is denoted by Py |4 - ¢



LINEAR OPERATORS 5

The definition of the linearity of a function between vector spaces is ex-
pressed in the standard functional notation. The next proposition states
that a function between vector spaces is linear if and only if its graph is
a subspace of the direct product of the domain and the codomain of that
function.

Proposition 2.3. Let ¥ and # be vector spaces over a scalar field F. Let
[V =W be a function and denote by 9y the graph of f; that is let

G ={(v,w) €¥YXW :veV and w=f(v)} SV xH.

The function f is linear if and only if the set 9; is a subspace of the vector
space VX W .

Proposition 2.4. Let ¥ and # be vector spaces over a scalar field F. Let
T e LV, W), let 4 be a subspace of V' and let A be a subspace of W' .
Then

T(@)={weW : Jve¥ such that w=Tuv}

is a subspace of W and
THH)={veV : Tve X}
is a subspace of V.

2.2. Composition, inverse, isomorphism. In the next two propositions
we prove that the linearity is preserved under composition of linear operators
and under taking the inverse of a linear operator.

Proposition 2.5. Let S : % — V¥V and T : V' — W be linear operators.
The composition T oS : % — W is a linear operator.

Proof. Prove this as an exercise. ([l

When composing linear operators it is customary to write simply T'S
instead of T'o S.

The identity function on ¥ is denoted by Iy. It is defined by Iy (v) = v
for all v € ¥. It is clearly a linear operator.

Proposition 2.6. Let T : ¥V — W be a linear operator which is a bijection.
Then the inverse T~ : W — ¥ of T is a linear operator.

Proof. Since T is a bijection, from what we learned about function, there
exists a function S : # — ¥ such that ST = Iy and T'S = I. Since T is
linear and T'S = Iy we have

T (aSz + BSy) = oT(Sz) + BT(Sy) = a(TS)z + B(TS)y = az + By
for all o, 8 € F and all xz,y € #'. Applying S to both sides of
T (aSz + BSy) = az + By
we get
(ST) (aS:c + BSy) = S(ax + /By) Va,€F Vz,ze¥.
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Since ST = Iy, we get
aSa:+ﬁSy:S(aa:+ﬁy) Va,€F Vx,ye ¥,

thus proving the linearity of S. Since by definition S = 7~! the proposition
is proved. [l

A linear operator T : ¥ — # which is a bijection is called an isomor-
phism between vector spaces ¥ and #'.

By Proposition 2.6 each isomorphism is invertible and its inverse is also
an isomorphism.

2.3. The Coordination Operator. The following theorem introduces a
fundamental isomorphism between a finite-dimensional vector space ¥ over
F and F™, where m = dim 7.

Theorem 2.7. Let ¥ be a finite-dimensional vector space over IF, let m =
dim ¥, and let B = (vi,...,vn) be an ordered basis for ¥'. The function
Cp:V — F™ is defined for all v € ¥V as follows:
a1
Cz(v)=a where a= | | €F" and v=a01v1 4+ AnUm.

Qm
This function is an isomorphism between ¥ and F™.
Proof. First, we express Cp in terms of its graph representation:

aq
Cp=( (v,a) eV xF" :v=aqv1 + -+ apv, Na=
am

To establish that Cy is a bijection, we prove the following four statements:
(Total), (UniVal), (Surject), and (Inject).
A blueprint of the proof is as follows:

(1) ¥ = span & implies that Cp is (Total).

(2) A is linearly independent implies that Cy is (UniVal).

(3) The axioms of a vector space AE and SE imply that C is (Surject).
(This implication follows from the (Total) property of the additions
and scaling functions.)

(4) The axioms of a vector space AE and SE imply that Cz is (Inject).
(The implication in (Inject) follows from the (UniVal) properties
of the additions and scaling functions.)

To prove that the bijection Cg is linear, we need to show that Cyz is a
subspace of ¥ x F"™. This is a straightforward verification. O

It is important to point out that the formula for the inverse function

(Cpg)_l F— Y
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is given by

o1 m a1

(Cx)™ | : :Zajvj for all C | e P (2.5)

Om J=1 m

Observe that equation (2.5) defines a function from F™ to ¥ regardless of
whether & forms a basis of 7.

Definition 2.8. The function Cy : ¥ — F™ introduced in Theorem 2.7 is
called the Coordination Operator. O

Example 2.9. Inspired by the definition of C'» and (2.5), we define a gen-
eral operator in this spirit. Let ¥ and # be vector spaces over F. Let ¥
be finite-dimensional, m = dim ¥ and let & = (v1,...,v,) be a basis for
V. Let € = (wy,...,wn,) be any m-tuple of vectors in # . The entries of
an m-tuple can be repeated, they can all be equal, for example equal to 0y .
We define the linear operator L;? VYV — W by

a1

L2(0) =Y ajw;  where L | = Cav). (2:6)
j=1

Qm,

In fact, L% : ¥V — W is a composition of Cz : ¥ — F™ and the operator
F™ — % defined by

gl m 51

f =) gGuw; o forall | eF™. (2.7)
Em 7=l Em
It is straightforward to verify that (2.7) defines a linear operator.
Denote by &, the standard basis of F'”, that is the basis which consists of
the columns of the identity matrix I,,,. Then Cyp = Lifm and (Cg)~! = L‘f}.

O

Exercise 2.10. Let ¥ and # be vector spaces over F. Let ¥ be finite-
dimensional, m = dim ¥ and let Z be a basis for ¥. Let € = (w1, ..., wn)
be a list of vectors in # with m entries.

(a) Characterize the injectivity of LZ : 7 — #.

(b) Characterize the surjectivity of LZ : 7 — #.

(c) Characterize the bijectivity of LY : ¥ — #/.

(d) If LZ : ¥ — # is an isomorphism, find a simple formula for (LZ)~L.

O
Proposition 2.11. Let ¥V and # be vector spaces over F. Let ¥V be finite-
dimensional, m = dim ¥ and let # = (v1,...,vy) be a basis for V. For

every T € L(V, W) we have T = LZ if and only if € = (Tv1,...,Tvm).
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2.4. The nullity-rank theorem. Let T': ¥ — # is be a linear operator.
The linearity of T" implies that the set

nulT:{UE"//:Tvzow}

is a subspace of #". This subspace is called the null space of T'. Similarly,
the linearity of T implies that the range of T is a subspace of #. Recall
that

ranT:{wGV/:EIUE”// w:TU}.

Proposition 2.12. A linear operator T : V' — W is an injection if and
only if nul T = {0y }.

Proof. We first prove the “if” part of the proposition. Assume that nul7T =
{04 }. Let u,v € ¥ be arbitrary and assume that T'u = T'v. Since T is linear,
Tu = Tv implies T'(u—v) = 0y . Consequently u—v € nulT = {0y }. Hence,
u — v = Oy, that is u = v. This proves that T' is an injection.

To prove the “only if” part assume that T : ¥ — # is an injection.
Let v € nulT be arbitrary. Then Tv = 0y = T0y. Since T is injective,
Tv = T0y implies v = 0y. Thus we have proved that nul7 C {0y }. Since
the converse inclusion is trivial, we have nulT = {0y }. O

Theorem 2.13 (Nullity-Rank Theorem). Let ¥ and # be vector spaces
over a scalar field F and let T : V' — W be a linear operator. If ¥ is
finite-dimensional, then nulT and ranT are finite-dimensional and

dim(nulT") + dim(ran7) = dim 7. (2.8)
Proof. Assume that 7 is finite-dimensional. We proved earlier that for an
arbitrary subspace % of ¥ there exists a subspace 2 of ¥ such that
USE ="V and dim% + dim 2 = dim 7.
Thus, there exists a subspace 2 of ¥ such that
(Yo 2 =7 and dim(nulT) + dim 2" = dim 7. (2.9)

Since dim(nul7") + dim 2" = dim ¥, to prove the theorem we only need to
prove that dim 2" = dim(ranT’). To this end, we consider the restriction
Ty : Z —ranT of T to the subspace £ . This operator is defined by

Tlg(v)=Tv YveZ.

We will prove that T'| 2~ is an isomorphism. Let {x1,...,2,,} be a basis for
Z". To prove that T'| 4 is a surjection, we will prove

span{Tz1,...,Txp} =ranT. (2.10)

Clearly {T T1,. .. ,T:Um} CranT. Consequently, since ranT is a subspace of
W, we have span{Txl, . ,T:z:m} CranT. To prove the converse inclusion,
let w € ranT be arbitrary. Then, there exists v € ¥ such that Tv = w.
Since ¥ = (nul T')+ 2", there exist u € nulT and z € £ such that v = u+z.

eq-stl-rnt
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Then Tv =T(u+2z) = Tu+Tx =Tx. Asz € 2, there exist &1,...,&n €F
such that z = Z;”Zl &jrj. Now we use linearity of 1" to deduce

m
w=Tv=Tx = ijij.

j=1
This proves that w € span{T;rl, e ,Tl‘m}. Since w was arbitrary in ran T
this completes a proof of (2.10).
Next we prove that the vectors T'xy,...,Tx,, are linearly independent.
Let aq,...,a, € F be arbitrary and assume that
o Tz + -+ apTxy, = 0y (2.11)
Since T is linear (2.11) implies that
o121+ -+ apy, € nulT. (2.12)
Recall that x1,..., 2, € Z and 2 is a subspace of ¥, so
a1z + -+ apmxy, € 2. (2.13)
Now (2.12), (2.13) and the fact that (nul7) N 2" = {0y} imply
o1+ -+ oy = 0y (2.14)
Since z1,..., %y, are linearly independent, (2.14) yields a; = 0 for all j €
{1,...,m}. This completes a proof of the linear independence of the vectors
Ty, ....,Tzy,.
Thus {Tml, .. ,T;Um} is a basis for ran T'. Consequently dim(ranT") = m.
Since m = dim 2", (2.9) implies (2.8). This completes the proof. O

A direct proof of the Nullity-Rank Theorem is as follows:

Proof. Since nulT is a subspace of ¥ it is finite-dimensional. Set k =
dim(nulT) and let € = {ul, . ,uk} be a basis for nul 7.

Since ¥ is finite-dimensional there exists a finite set .% C ¥ such that
span(.#) = ¥. Then the set T.# is a finite subset of # and ranT =
span(T F ) Thus ranT is finite-dimensional. Let dim(ran T) = m and let
9 = {wl, . ,wm} be a basis of ranT.

Since clearly for every j € {1,...,m}, w; € ranT, we have that for
every j € {1,...,m} there exists v; € ¥ such that Tv; = w;. Set ¥ =
{vl,...,vnl}.

Further set Z =% U 2.

We will prove the following three facts:

M) €N =0,

(IT) span B =¥/,

(III) £ is a linearly independent set.

To prove (I), notice that, since ¢ is linearly independent, the vectors in
¢ are nonzero. Therefore, for every v € & we have that Tv # 0y . Since for
every u € ¥ we have Tu = 0y we conclude that u € € implies u € 2. This
proves (I).

eq-li-rnt

eq-li2-rnt

eq-1i3-rnt

eq-lid-rnt



10 BRANKO CURGUS

Next we prove (II). By the definition of % we have 4 C #'. Since 7 is a
vector space, we have span % C V.

To prove the converse inclusion, let v € ¥ be arbitrary. Then Tv € ranT.
Since ¢ spans ranT, there exist 51, ..., 8m € F such that

m
Tv = Z Bijw;.
j=1
Set
m
' = Z Bjv;.
j=1

Then, by linearity of T', we have
m m
T’Ul = ZBjT’Uj = Zﬁjwj =Tv.
Jj=1 J=1

The last equality and the linearity of T yield T'(v —v") = 04 . Consequently,
v—v" €nulT. Since ¢ spans nul T, there exist a1, ..., a, € F such that

k
v — ’Ul = E ;U5
j=1

Consequently,

k k m
/
v=0 + E ;= E au; + E Bjv;.
Jj=1 Jj=1 Jj=1

This proves that for arbitrary v € ¥ we have v € span #. Thus ¥ C span #
and (II) is proved.

To prove (III), let aq,...,a; € F and B1,...,Bmn € F be arbitrary and
assume that

k m
Z oU; + Z ﬁjvj = 0y. (215)
j=1 j=1

Applying T to both sides of the last equality, and using the fact that u; €
nul7" and the definition of v; we get

Z ijj == Oy/
J=1

Since & is a linearly independent set the last equality implies that 8; = 0
for all j € {1,...,m}. Now substitute these equalities in (2.15) to get

k
Z ;U = 0/7/.
J=1

Since % is a linearly independent set the last equality implies that c; = 0
for all 4 € {1,...,k}. This proves the linear independence of 2.

‘ eg-assu-4-1-1i
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It follows from (II) and (III) that 2 is a basis for #". By (I) we have that
H#PB =H#HC +#P = k + m. This completes proof of the theorem. O

The nonnegative integer dim(nul7T’) is called the nullity of T'; the non-
negative integer dim(ranT") is called the rank of T

The nullity-rank theorem in English reads: If a linear operator is defined
on a finite-dimensional vector space, then its nullity and its rank are finite
and they add up to the dimension of the domain.

Proposition 2.14. Let V' and # be vector spaces over F. Assume that ¥
is finite-dimensional. The following statements are equivalent

(a) There exists a surjection T € L(V , W).
(b) # is finite-dimensional and dim ¥ > dim #'.

Proposition 2.15. Let ¥ and # be vector spaces over F. Assume that ¥
is finite-dimensional. The following statements are equivalent

(a) There ezists an injection T € L(V, W).

(b) FEither W is infinite-dimensional or dim ¥ < dim % .

Proposition 2.16. Let ¥ and # be vector spaces over F. Assume that ¥
is finite-dimensional. The following statements are equivalent

(a) There ezists an isomorphism T : ¥V — W .
(b) # is finite-dimensional and dim % = dim ¥'.

3. MATRIX OF A LINEAR OPERATOR

3.1. A Natural Isomorphism between Z(7,%#) and F"*™. Let ¥
and % be nontrivial finite-dimensional vector spaces over F, m = dim ¥/,
n=dim%?, let Z = {vi,..., vy} beabasis for ¥, and let € = {wy, ..., w,}
be a basis for #. The mapping Cy provides an isomorphism between ¥
and F™ and Cy provides an isomorphism between # and F".

Recall that the simplest way to define a linear operator from F™ to F"
is to use an n X m matrix A. It is convenient to consider an n X m matrix
to be an m-tuple of its columns, which are vectors in F". For example, let
ai,...,am,m € F" be columns of an n x m matrix A. Then we write

A= [al am].

This notation is convenient since it allows us to write a multiplication of a
vector x € " by a matrix B as

m 51

Ax = Z &a; where x=|: (3.1)

7=l &m

Notice the similarity of the definition in (3.1) to the definition (2.6) of

the operator Lg in Example 2.9. Taking £ to be the standard basis &, of

F™ and taking %" to be the m-tuple of columns of A, which are vectors in

F"—call this m-tuple &/—we have Lﬁ" (x) = Ax.



12 BRANKO CURGUS

In some sense, we identify the vector space F"*™ with the vector space
(F™)™.

Let T : ¥ — # be a linear operator. Our next goal is to connect T in a

natural way to a certain n x m matrix A. That “natural way” is suggested
by following diagram:

> (32)

We seek an n x m matrix A such that the action of T between ¥ and #
is in some sense replicated by the action of A between F'™™ and F". Precisely,
we seek A such that

A(Cz(v)) = Cy(Tv) NYveV. (3.3)

In English: multiplying the vector of coordinates of v by A we get exactly
the coordinates of T'w. Or, starting from x € F™, we follow the arrows in
the commutative diagram in (3.2), and calculate

Ax = Cy (T(c;; <x))). (3.4)

&1
Withx = | : | and £ = (v1,...,0y) in (3.4) we have that

Em
— Oy (T

= Cy (T (Z £vj )

= Oy (Zm:g Tfuj>

Jj=1
m
Z ij

The preceding sequence of equahtles and the definition of the matrix-vector
multiplication shows that

A= {C’cg(Tvl) ch(Tvm)]. (3.5)

The matrix A defined in (3.5) has the desired property stated in (3.3). With
this A the diagram in (3.2) is commutative.



LINEAR OPERATORS 13

For an arbitrary T € Z (¥, #') the formula (3.5) associates the matrix
A € F™™ with T. In other words (3.5) defines a function from £ (¥, #')
to F™"*™_ We formally define this function in the following theorem.

Theorem 3.1. Let ¥ and W be finite-dimensional vector spaces over F,
m =dim¥, n = dm¥, let B = {v1,...,un} be a basis for ¥ and let
€ = {wi,...,wy} be a basis for W. The function

Mcg LV W) — Fm
defined by
MZ(T) = [Cp(Twr) - c%(Tvm)} forall TeZL(V. W)  (3.6)
s an isomorphism.

Proof. 1t is straightforward to verify that M%Z? is a linear operator.
Since the definition of MZ(T') coincides with (3.5), equality (3.3) yields

Cig(Tw) = (MZ (T))Cua(v). (3.7)

The most direct way to prove that Mg is an isomorphism is to construct
its inverse. The inverse is suggested by the diagram (3.8) below. In the
following diagram, 7" is the only unknown:

Cy (Cyg) 1 (3.8)

F? ——— "

A
Define
NZ :F™>m = LV, W)
by ,
(NZ(A) () = (C¢) " (ACH ), forall A€F™™.  (39)

Next we prove that
NZoMZ =Igwy) and ML o N = Iguxm.

First for arbitrary T' € £ (¥, #') and arbitrary v € ¥ we calculate

((NZ 0 MZ)(T)) (v) = (Co) " ((MZ(T)) (Ca(w))) by (3.9)
=Tv.
Hence (N7 o MZ)(T) = T and thus, since T € .Z(¥,#) was arbitrary,
NC? e} Mc‘? = Ig(a//;ﬂ/).
Let now A € F"*™ be arbitrary and calculate
(M o NJ)(A) = M7 (NZ(A))
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36 = [Ce((NZA) w) - C (NZ(A) ()|
3.9 ::[A(lg(vl)"' ACL%(UWJ}

:A[C@(Ul) C«’ﬂ(”m)]
=Al,
= A.

Thus, (MZoNZ)(A) = A for all A € F"™, proving that M7 oNZ = Ipuxm.
This completes the proof that Mg is a bijection. Since it is linear, Mg
is an isomorphism. O

The following corollary is a special case of (3.7).

Corollary 3.2. Let m € N and let V be finite-dimensional vector spaces
over F with m = dim¥'. Let & and € be bases for V. Then

Yoe ¥ Cyp(v) = (MZ(Iy))Cam(v)

Definition 3.3. In the setting of Corollary 3.2, the m x m matrix M7 (Iy)
is called change of coordinates matrix, or change of bases matrix O

Theorem 3.4. Let k,m,n € N, let %, V and W be finite-dimensional
vector spaces over F, k = dim%, m = dim¥, n = dim#, let </ be a
basis for %, let B be a basis for V', and let € be a basis for # . Let
Se LU V) and T € LV, W). Let MZ(S) € F™*k MZ(T) € Frxm
and MZ (TS) € F™* be as defined in Theorem 3.1. Then

MZ(TS) = (MZ(T))(MZ(5))-

Proof. Let o/ = (u_...,u;) and calculate, first using the definition in (3.6),
then the boxed tools

) - ch(TSuk)]
)(Co(Suw)) -+ (MZ(T)) (C(Sur) |
MZ(T)) [C%(Sul) C@(Suk)}

(
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The following diagram illustrates the content of Theorem 3.4.
V4
/ \
Y Ts
C’EJ
MA’
% \

MZ(TS)=

W

Cs

Definition 3.5. Let ¥ and # be vector spaces over F. Operators S €
ZL(V)and T € L (W) are said to be similar if there exist an isomorphisms
®: ¥ — W such that

T=2350""

O
Definition 3.6. Let n € N and let A and B be n X n matrices. Matrices

A and B are said to be similar if there exists an invertible n x n matrix P
such that B = PAP~ 1. O

Theorem 3.7. Let n € N and let ¥V and # be finite-dimensional vector
spaces over F such that n = dim? = dim#. Let S € ZL(¥) and T €
L(W). The following statements are equivalent.

(i) The operators S and T are similar.
(ii) For every basis o/ of ¥ (respectively, every basis B of W ), there
exists a basis B of W (respectively, a basis </ of V') such that

MZ(S) = MZ(T). (3.10)
(iii) For every basis </ of V' and every basis B of # the n x n matrices
M<(S) and MZ(T) are similar.
4. PROBLEMS

Problem 4.1. Let ¥ and # be vector spaces over a scalar field F. Let .¥
be a subspace of the direct product vector space ¥ x#, let ¢ be a subspace
of 7 and let .77 be a subspace of #". Then

S (G)={weW : Jve¥ suchthat (v,w) €.}
is a subspace of # and
S NAH)={veV : Jwe A such that (v,w) € .7}
is a subspace of 7. %
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Problem 4.2. Let ¥ and # be finite-dimensional vector spaces over a
scalar field F. Let .% be a subspace of the direct product vector space
V' x# . The following four sets are subspaces

dom.” = {v e ¥ : 3w € ¥ such that (v,w) € .7},
ran.” = {w € # : Jv € ¥ such that (v,w) € .7},
nul. ={ve? : (v,0y)c.s},
mul.? ={we¥# : (0y,w) €S}
and the following equality holds:
dimdom . + dim mul . = dimran . + dimnul ..

Hint: The following equivalence holds. For all v € ¥ and all w € # we
have:

(vyw)e S & (v+z,w+y) €S Vaenuls and Vy € mul..
o

Problem 4.3. Let ¥ and # be finite-dimensional vector spaces over a
scalar field F and recall that ¥ x# and # x¥ are the direct product vector
spaces. Prove that the function

R:VxW —WxyV

defined by
R(v,w) = (w,v) forall (v,w)e€ ¥ xW

is an isomorphism. %

Problem 4.4. Let ¥ and # be finite-dimensional vector spaces over a
scalar field F and recall that ¥ x# and # x¥ are the direct product vector
spaces. Let .7 be a subset of ¥ x#. Then 7 is an isomorphism between
¥ and # if and only if the set

{(w,v) eEW XYV : (v,w) € 9} =RT

is an isomorphism between # and ¥'. (Use Problem 4.3 and Propositions 2.3
and 2.4 to prove this equivalence.) O

Problem 4.5. This problem explores the vector space &3 = Rlz|.4 of
polynomials od degree at most 3 with real coefficients. Recall that the
standard basis for this vector space is the basis which consists of monomials:

M= (1,:U,:E2,m3).
(I) Consider the linear operator T' € X(L@g, 323) = 3(93) defined by
Vpe P (Tp)(x) = p(=1) + p(=3)x + p(1)a? + p(3)a".

(a) Find the 4 x 4 matrix A = M-7(T), the matrix of T relative to
the basis of monomials .Z .
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(b) Find the inverse of the matrix A considering it as the matrix of
the linear operator T-!. That is, find M*Z(T’l) by using logic
of polynomials, not using matrix calculations.

(c¢) The operator T has four eigenvalues. Determine these eigenval-
ues and the corresponding eigen-polynomials. That is, find the
real numbers A;, A2, A3, Ay and the corresponding polynomials

p1(z), p2(z), p3(x), pa(x) in P3 such that
Vi e{l,2,3,4} (Tpj)(x) = Ajp;(x).
(IT) Instead of the special numbers —1,—3,1,3 € R used in (I), consider

an arbitrary
"M

c= 72 €R4,
73

Y4
and define L. € ¥ (@3) by

Vpe Ps (Lep)(x) = p(n) + p(2)x + p(y3)x® + p(ya)z®.

(a) Consider the function ¥ : R* — £ (Z3) defined by ¥(c) = L.
Is this function linear? Is this function a surjection? Is this
function an injection?

(b) Characterize ¢ € R* for which L. € £ (#%3) is an isomorphism.

(c) Does there exist c,d € R* such that LeLg = [5,?

O

Problem 4.6. Let n € N and denote by &2, = R[z]<,, the vector space of
all polynomials of degree at most n with coefficients in R.

Denote by D = % the differentiation operator defined on &,.
Let t € R. Denote by S; the shift operator defined on &, by

Vi€ Pn  (Sif) (@)= flz+1)

We have proved that D,S; € 92”(9%, @n) = f(z@n) All statements

below are in the vector space . (,@n) The operators D, S; depend on n as
everything else in this problem. However, for conciseness, we choose not to
emphasise that by indexing them by n.

(a) Prove that for all t € R we have
1

Si=>_ Etka. (4.1)
k=0 "

While this is not exclusively a linear algebra task, it is an important
mathematical fact with significant linear algebraic consequences.
(b) The preceding result implies that

vVt e R Stespan{Dk:kENU{O}},
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where D0 %' 1 2, . Consequently,
span{St te R} C span{Dk :keNU {O}}

Does the converse inclusion hold?

(c) Set
9 = span{Dk :keNU {0}}, S = span{St ‘te ]R}.

Find a basis for each of these spaces consisting of the operators
that are being spanned. Be specific and as thorough as possible, in
particular when discussing ..

(d) In formula (4.1), a shift operator is expressed as a specific linear
combination of the powers of the derivative operator. Do analogous
converse formulas exist? That is, can the powers of the differenti-
ation operator be expressed as specific linear combinations of shift
operators, or as linear combinations of the powers of a fixed shift
operator?

¢

Problem 4.7. In an earlier problem we considered special subspaces

o def{fERR Ja,b €R such that f(x) = asin(wz +b), teR}.

of the vector space RF of all real valued functions defined on R. Here w is
an arbitrary fixed nonzero real number. We proved that

Ty = (cos(wz), sin(wz))

is a basis of .¥,.

(a) Denote by D = % the differentiation operator defined on .#,,. Prove

that D € Z(S,,.%,) and calculate M% (D).
(b) Let t € R. Denote by S; the shift operator defined on .7, by

Vie S (Suf)(@) = flz+1).

Prove that S; € .f(&”w, yw) and calculate M (St)
(c) Prove that

d
= (MF(80) = MFD)ME(S).
(d) Set
D = M7 (D).
Prove that

M7=(S;) = Zki
k=0
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Problem 4.8. Let n € N and denote by &, = R[z]<,, the vector space of
all polynomials of degree less or equal to n. Denote by

My = (1,:6,...,3:")
the basis of &, consisting of the monomials in &2,,.
(a) Denote by D = % the differentiation operator defined on &2,,. Prove

that D € .2 (P, ) and calculate M//Z: (D).
(b) Let t € R. Denote by S; the shift operator defined on &, by

Vfe P, (Stf)(x) = f(xz+ ).
Prove that S; € E(L@n, an) and calculate Mj;//: (Sy).

(c) Prove that
d
S (M (50)) = M D)M ().
@ sa
D = M7 (D).
Prove that

"1
MZn(S) =Y Etka.
k=0
O

Remark 4.9. The content of items (c) and (d) in Problems 4.7 and 4.8
indicates that the formula
€tD = St

makes sense on the space of all differentiable functions.
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